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In this paper, we apply She and Leveque’s [Z.-S. She and E. Leveque, Phys. Rev. Lett. 72, 336 (1994)]
hierarchy model under the assumption that lim,,_,.,7,/p= —1 with 7, being the scaling exponent for the local
averaged dissipation function suggested by Novikov [E. A. Novikov, Phys. Rev. E 50, R3303 (1994)]. The
resulting model agrees well with existing theoretical and experimental results for p=<10. The most interesting
prediction of this model is the saturation of the exponents of the velocity increment as p— .

PACS number(s): 47.27.Gs

In fully developed turbulence flows, it is believed that
there exists a power law scaling range for the velocity incre-
ment in the inertial range [1], i.e.,

(8uP)=constX rép, 1)

where () denotes an ensemble average, r is the separation,
and Su,=u(x+r)—u(x). According to Kolmogorov [2], the
velocity increment is related to the local averaged dissipation
rate, €,, which scales as

(€P)y=constXrr, 2

and the relationship between these two exponents can be
written as [3]

gp:p/3+7-p/3' (3)

She and Leveque [4] (SL) have recently proposed a hier-
archy structure model yielding the scaling exponents for the
velocity increment,

2 p/3
(3]

in good agreement with experimental values up to measur-
able orders (p=10). On the other hand, Novikov [5] applied
the theory of infinitely divisible distribution to the scaling
properties of €,. He suggested that the parameter

£=5+2 : @)

h=—1lim7,/p (5)

p—®

should equal 1. He claims that #=2/3 in the SL model im-
plies a gap in the probability distribution function (PDF) of
the multiplicative factor, €, /€;, which contradicts to existing
experiments [6]. Using the model by Novikov, Nelkin [7]
calculated scaling exponents, §,, which are indistinguish-
able for p=<10 from the exponents by She and Leveque.
Nelkin argues that the underlying physics of the most inten-
sive events in these models are quite different.

In this paper, we generalize the SL model by letting /2 be
a free parameter. We prove that if the hierarchy structure
model is correct, then #=1 implies a saturation of scaling
exponents for p—oo. On the other hand, if A=1 is a rigorous
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mathematical theorem, then the hierarchy structure should
yield a saturation of the scaling exponents.

First, we derive the generalized SL model following [4].
Assuming that the hierarchy of € in the original SL model is
still valid, we have

)l
efPH):Apeﬁp)ﬁeﬁ e 0<pB<1 (6)
where €)= (e?*1)/(€?), B is a constant, and A p are func-

tions only depending on p. Using (2), we obtain the differ-
ence equation for 7,,

Tp+2“(1+,3)'7'p+1+,37'p+q(1‘“ﬁ)=0. @)

Here the constant g describes the scaling exponent for the
most intensive structures through the following relation:

e£°°) ~r74, (8)

We assume that q is a free parameter and is to be determined
later. An apparent family of solutions of (7) can be written as

p=ap+b+f(p), ©)

where a and b are constants, and f(p) is a polynomial func-
tion of p. They are to be determined. Clearly, the first two
terms in (9) are special solutions for the inhomogeneous dif-
ference equation (7) when a= —gq, and f(p) satisfies a ho-
mogeneous equation, i.e.,

f(p+2)—(A+pB)f(p+1)+Bf(p)=0, (10

yielding a nontrivial solution f(p)=aB”, where « is a con-
stant. If 7, grows more slowly than exponential, we have
f(©)=0 and B<1. The general solution of (7) has, then, the
form

T,=—qp+b+ap’, (11)

subject to boundary conditions 79=0 and 7;=0. The first
condition is trivial and the second condition is from Kolmog-
orov [2] and the 4/5 law [1]. If we further use the definition
of intermittency parameter, 4= — 7, and A= —lim,_,7,/p
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defined by Novikov [5], we have g=h, b=—a=h?/u, and
B=1—pu/h. Equation (11) can be rewritten as

1—(1-%Yﬂ. (12)

It should be pointed out that the model derived here is real-
izable in the sense of the non-negative PDF for the multipli-
cative factor. In fact, (12) corresponds to Eq. (14) in Ref. [5]
if the density function is chosen as

h2
7,=—hp+ —
P PT

F'(x)=Ad8(x—xyg), (13)

where 8(x) is the Dirac delta function, A and x, are con-
stants, depending on /# and u:

x0=—-ln(1—%),

and

h? M
A—";ln(l—‘z).

Therefore, the realizability of the model can be guaranteed
by the Lévy-Baxter-Shapiro theorem [5]. Using the & func-
tion as the Lévy-Khinchine measure has been proposed in
the model by She and Waymire [8], leading to a log-Poisson
distribution for the multiplicative factor.

Using Ref. [2], the scaling exponents for the velocity in-

crement can be written as
p/3
1—(1—%) } (14)

Up to now, the only assumption used is the hierarchy
relationship (6). A(=u/2) and w<<1 are two positive free
parameters. The original SL model corresponds to A=2/3
and u=2/9. If we follow Novikov’s suggestion to choose
h=1, (12) and (14) become

1 h?

1
7==pt - (1-uyl, (15)

and

1 p/3
§p=;[l—(1-u) 1, (16)

An interesting consequence of (16) is that £, saturates to
1/ when p—oo.

Specifically, if we choose w=2/9 which has been con-
firmed by many experiments [9] and used in the models by
She-Leveque and Nelkin, then 8=7/9 and we get a new
formula for the scaling exponents:

7 p/3
1—(5) ] (17)

The prediction of this model is consistent with the original
SL model and Nelkin’s model [7] for p=<10, as listed in

9
§p=5
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TABLE 1. Scaling exponents £, for various models.

Order p Eq. (17) SL Kolmogorov [2] Nelkin [7]
1 0.361 0.363 0.358 0.373
2 0.694 0.695 0.691 0.702
3 1.000 1.000 1.000 1.000
4 1.281 1.279 1.283 1.273
5 1.539 1.538 1.543 1.528
6 1.777 1.777 1.777 1.767
7 1.996 2.001 1.987 1.993
8 2.197 2.210 2.172 2.208
9 2.382 2.407 2.333 2.414
10 2.552 2.593 2.469 2.611

Table 1. For p>20, the scaling exponents begin to approach
the saturation limit (see Fig. 1).

It is noticed that for x=2/9 the values of the low-order
scaling exponents, &, (p=<10), in (14) are not sensitive to &
when A varies from 2/3 to 1. As a matter of the fact, the
variation is within 2%. This observation implies that / is a
measure for the most intensive structures which contributes
primarily to high-order statistics. In addition, from (3) and
the assumption £=1, we can obtain lim, ,.{,/p=0, indi-
cating that the growth of {, must be slower than a linear
function for p large enough. From (12) and (14), we obtain
Tp(1—0)=0 and §,(u—0)=p/3 regardless of , indicat-
ing that the hierarchy structure model is a natural extension
of the theory of Kolmogorov [1].

A cutoff of the scaling exponents of velocity increment in
the one-dimensional Burgers equation has been observed
[10]. Its physical origin in connection with the shock struc-
ture has been studied. At this point, we are not sure what the
underlying physics is for the saturation of the scaling expo-
nents in the three-dimensional incompressible Navier-Stokes
turbulence. Nevertheless, the saturation of the scaling expo-
nents might indicate a similar physics: the direct connection
of the characteristic length of the structure with its intensity
for the most intensive events.
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FIG. 1. Scaling exponents of velocity increment, £, , as a func-
tion of p for Eq. (17), SL model, Kolmogorov [2] and Nelkin’s
formula [7].
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The fundamental assumption of the hierarchy structure
model in (7) requires that the scaling exponents approach
their asymptotic values with an exponential rate, which dif-

fers from the model by Nelkin and the passive-scalar turbu-
lence [11]. The rate of approach to the asymptotic values is
determined by the tails of the corresponding PDFs. Since the
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events in that range are extremely rare, it seems difficult to
resolve this issue soon through experimental or numerical
studies.

We thank R. H. Kraichnan, D. Martinez, M. Nelkin, E. A.
Novikov, Z. She, K. R. Sreenivasan, and V. Yakhot for useful
discussions.
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